SELECTIVE CATALYTIC ACTIVITY OF METAL COMPLEXES TOWARDS ACETYLENES: CYCLISATION OF 2-METHYLBUT-3-YN-2-OL TO 1,2,4-TRIS(1-HYDROXY-1-METHYLETHYL) BENZENE M.V. Russo A. Furlani^{*} Istituto di Chimica Generale, Università di Roma

(Received in UK 24 May 1976; accepted for publication 14 June 1976)

In the course of our studies on the reactivity of 2-methylbut-3-yn-2-ol(I) in the presence of some nickel and platinum complexes we have found that this acetylene derivative is linearly polymerised in the presence of the complex $cis-(Ph_3P)_2PtCl_2$ (1) (medium length of the polymeric chain about 20 monomeric units) and that the same acetylenic alcohol is trimerised to 1,3,5-tris(1-hydro-xy-1-methylethyl) benzene in the presence of the complex $(nBu_3P)_2NiBr_2$ (yield about 90%) (2).

Now we have found that in the presence of the complex $(Ph_3P)_2NiI_2$ (II) is converted in very high yield to 1,2,4-tris(1-hydroxy-1-methylethyl) benzene.

The complexes previously proposed for the cyclisation of I gave normally mixtures of cyclisation and polymerisation products from which pure compounds were obtained in lower yields (3-4). A typical experiment is given below: to 5 ml (4.34 g) of I in 15 ml of benzene 0.418 g of II are added. The reaction mixture is refluxed for about 1 hour. In the course of the reaction a crystal-line mass separates. After cooling the solid product is filtered off and recrystallised from benzene-CH₃OH (1:1) (yield 3.67 g - 85%) m.p. 186-87°C; U.V. max 262 nm in CH₃OH log \geq 2.35; I.R. 1608(mw) 1555(mw) cm⁻¹; N.M.R. in DMSO (\oint values referred to TMS): H aromatic 7.30 s (1H), 7.09 s (2H); -OH 6.93 s (1H), 6.90 s (1H), 4.71 s (1H); -CH₃ 1.56 s (12H) 1.38 s (6H); mw osmometric

2655

254 (calc. 252); mass spectrum (70 eV - m/e values, ions, relative intensities, $m^* = metastable ions$): 237 (M-CH₃)⁺ (10); 235 (M-OH)⁺ (0.1)(252 $\xrightarrow{-OH}$ 235) $m^* = 219.15$; 220 (M-CH₃OH)⁺ (19); 219 (M-CH₃-H₂O)⁺ (100) (237 $\xrightarrow{-H_2O}$ 219) $m^* = 202.37$; 204 (M-2CH₃-H₂O)⁺⁺ (7) (219 $\xrightarrow{-CH_3}$ 204) $m^* = 190.03$; 201 (M-CH₃-2H₂O)⁺⁺ (4) (219 $\xrightarrow{-H_2O}$ 201) $m^* = 184.48$; 161 (12); 159 (6); 143 (5); 92 (8); 77 (C₆H₅)⁺ (3); 59 (C(CH₃)₂OH)⁺⁺ (19); 43 (C(CH₃)₂H)⁺⁺ or (COCH₃)⁺⁺ (68); 41 (CH₂=C-CH₃)⁺⁺ (6); 31 (OCH₃)⁺⁺ (5); 28 (CO)⁺⁺⁺ (5); 18 (H₂O)⁺⁺⁺ (37).

Bibliography

- A. Furlani, P. Bicev, P. Carusi, M.V. Russo, J. Polymer Sci. Polymer Letters <u>9</u>, 19 (1971)
- 2) P. Bicev, A. Furlani, G. Sartori, Gazz. Chim. Ital. <u>103</u>, 849 (1973)
- 3) P. Chini, A. Santambrogio, N. Palladino, J. Chem. Soc. (C) 830 (1967)
- 4) P. Chini, N. Palladino, A. Santambrogio, J. Chem. Soc. (C) 836 (1967)